Final exam

Electronics \& Signal processing

10-04-2015

Prof. Dr. G. Palasantzas

Grade of written exam:
Points scored from each problem can give you total max: 10

Georg Simon Ohm

Problem 1 (2 points)

(a: $\mathbf{1 . 5}$ points) Derive the Thévenin equivalent between points A and B by calculating the potential $\mathrm{V}_{\text {TH }}$ (1 point) and $\mathrm{R}_{\text {тн }}$ (0.5 points) using only the Thevenin-Norton concepts to analyze the circuit.
(b: 0.5 points) If you connect a resistor RL across the terminals A and B then calculate the current that flows through the resistor RL.

Problem 2 (2 points)

Ideal opamp: $\mathrm{V}+=\mathrm{V}-$

Consider a circuit with input of N voltage sources Vi_{i} (i=1, 2, $\ldots \mathrm{N}$). The resistor R is connected to the input of the ideal opamp and to an additional voltage source Vs.
(a) Calculate the potential $\mathrm{V}+(1$ point) as a function of the potentials $\mathrm{Vi}_{\mathrm{i}}(\mathrm{i}=1 \ldots \mathrm{~N})$, Vs and the resistors $\mathrm{Ri}(\mathrm{i}=1 \ldots \mathrm{~N})$ and R . (b) Calculate the output voltage $V o$ as a functions of the Vi's, Vs, and the resistors of the opamp circuit shown above (1 point).

Problem 3 (1.5 points)

Consider the circuit (Wien bridge oscillator):

(a) Calculate the transfer ratio $\mathrm{A}=\mathrm{V}_{3} / \mathrm{V}_{1}\left(\mathrm{~V}_{+}=\mathrm{V}_{-} ; 0.5\right.$ points)
(b) Calculate the transfer ratio $\mathrm{B}=\mathrm{V} 5 / \mathrm{V} 3$ and derive the value of $\omega \mathrm{RC}$ for which B is real (0.5 points)?
(c) For what value of R_{1} / R_{2} is $A B=1$ in order to establish an oscillator by connecting points 1 and 5 (0.5 points)?.

Problem 4 (1.5 points)

(a:0.5 points) The diode is ideal with forward conduction voltage Vc. Calculate the current through the resistor RL assuming the supply voltage is $\mathrm{V}>0$.

(b)

(b1: 0.5 point) Find which diode conducts current [the diodes Di $(i=1,2,3)$ are ideal with voltage for forward conduction $V c=0.5 \mathrm{~V}$]. Explain briefly your answer.
(b2: 0.5 point) After you answer point (b1) calculate the current via the resistor R .

Problem 5 (1.5 points)

Design a synchronous counter that goes through the states (use J-K flip flops) $0,1,2,4,5,6$ shown below:

Before state				After state	
	Q3	Q2		Q3 Q2	
0	0	0	0		
1	0	0	1		
2	0	1	0		
4	1	0	0		
5	1	0	1		
6	-	1	0		

$\mathrm{Q}_{\mathrm{n}-1}$	Q_{n}	J	K
0	0	0	$*$
0	1	1	$*$
1	0	$*$	1
1	1	$*$	0

J	K	Q_{n}
0	0	Q_{n-1}
0	1	0
1	0	1
1	1	$\overline{Q_{n-1}}$

Problem 6 (1.5 points)

Application of a small varying input signal u i leads to small variation of the gate (G), drain (D), and source (S) potentials of the FET shown bellow:

$$
\begin{aligned}
& V_{G}^{\prime}=V_{G}+v_{g} \\
& V_{D}^{\prime}=V_{D}+v_{d} \\
& V_{S}^{\prime}=V_{S}+v_{s}
\end{aligned}
$$

If we connect a load resistor RL at output of the drain D (and the ground $V s s=0$), then show that the amplification ratio $v o / v i$, with vo the variation of the output potential, is given by:

$$
\frac{v_{o}}{v_{i}}=-\frac{g_{m}\left(R_{D} / / R_{L}\right)}{1+g_{m} R_{S}+\left[\left(R_{D} / / R_{L}+R_{S}\right) / r_{d}\right]}
$$

with g_{m} the transconductance and r_{d} the differential resistance of the FET at saturation.

