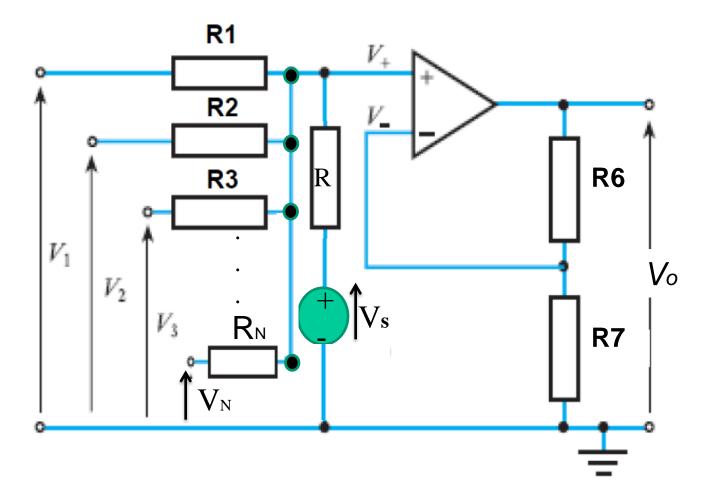


Georg Simon Ohm

Problem 1 (2 points)

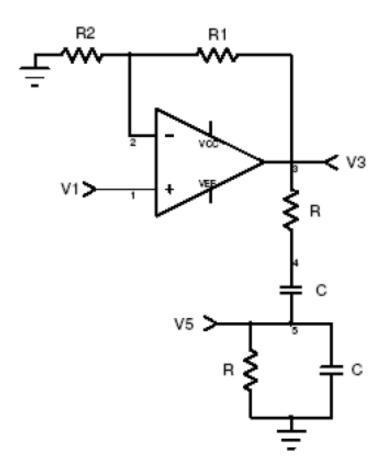


(a: 1.5 points) Derive the Thévenin equivalent between points A and B by calculating the potential V_{TH} (1 point) and R_{TH} (0.5 points) using <u>only the Thevenin-Norton</u> concepts to analyze the circuit.

(**b: 0.5 points**) If you connect a resistor RL across the terminals A and B then calculate the current that flows through the resistor RL.

Problem 2 (2 points)

Ideal opamp: V+=V-

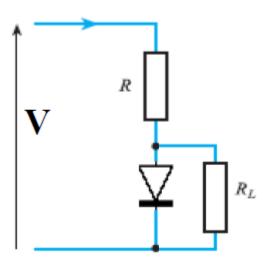


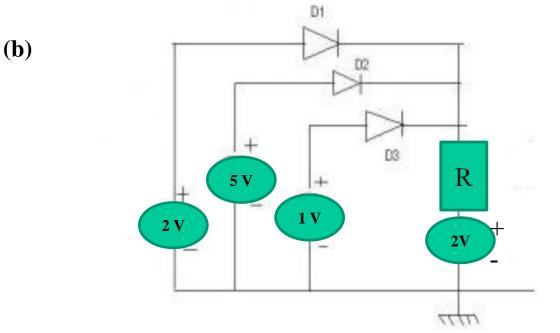
Consider a circuit with input of N voltage sources Vi (i=1, 2, \dots N). The resistor R is connected to the input of the ideal opamp and to an additional voltage source Vs.

(a) Calculate the potential V+ (1 point) as a function of the potentials Vi (i=1...N), Vs and the resistors Ri (i=1...N) and R. (b) Calculate the output voltage *Vo* as a functions of the Vi's, Vs, and the resistors of the opamp circuit shown above (1 point).

Problem 3 (1.5 points)

Consider the circuit (Wien bridge oscillator):




(a) Calculate the transfer ratio $A=V_3/V_1$ (V+=V-; 0.5 points) (b) Calculate the transfer ratio $B=V_5/V_3$ and derive the value of ωRC for which B is real (0.5 points)?

(c) For what value of R_1 / R_2 is AB = 1 in order to establish an oscillator by connecting points 1 and 5 (0.5 points) ?.

Problem 4 (1.5 points)

(a:0.5 points) The diode is ideal with forward conduction voltage Vc. Calculate the current through the resistor RL assuming the supply voltage is V > 0.

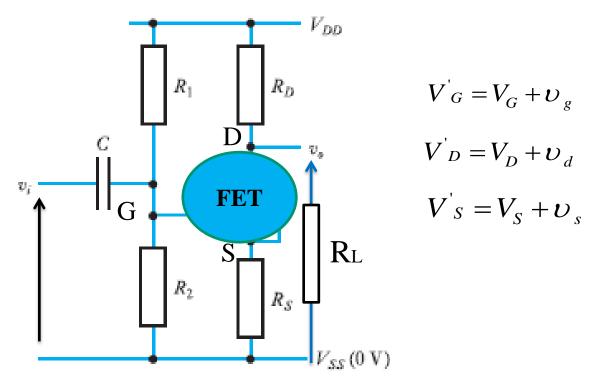
(b1: 0.5 point) Find which diode conducts current [*the diodes Di* (i=1,2,3) are ideal with voltage for forward conduction Vc=0.5 V]. Explain briefly your answer.

(**b2: 0.5 point**) After you answer point (b1) calculate the current via the resistor R.

Problem 5 (1.5 points)

Design a synchronous counter that goes through the states (use J-K flip flops) 0, 1, 2, 4, 5, 6 shown below:

]	Befo	re s	state	<u>After state</u>		
	Q3	Q2	Q1	Q3 Q2 Q1		
0	0	0	0			
1	0	0	1			
2	0	1	0			
4	1	0	0			
5	1	0	1			
6	1	1	0			


Q _{n-1}	Q _n	J	K
0	0	0	*
0	1	1	*
1	0	*	1
1	1	*	0

*: don't care

J	К	Q _n
0	0	Q _{n-1}
0	1	о
1	0	1
1	1	Q _{n-1}

Problem 6 (1.5 points)

Application of a small varying input signal vi leads to small variation of the gate (G), drain (D), and source (S) potentials of the FET shown bellow:

If we connect a load resistor RL at output of the drain D (and the ground Vss=0), then show that the amplification ratio v_0/v_i , with v_0 the variation of the output potential, is given by:

$$\frac{\nu_o}{\nu_i} = -\frac{g_m (R_D // R_L)}{1 + g_m R_S + [(R_D // R_L + R_S) / r_d]}$$

with g_m the transconductance and r_d the differential resistance of the FET at saturation.